skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoshimura, Akira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Koutentis, Panayiotis A (Ed.)
    Free, publicly-accessible full text available April 12, 2026
  2. This study provides a greener peptide coupling method using triarylphosphine and recyclable bicyclic benziodazolone, which acts as an oxidant for phosphine as well as base. 
    more » « less
  3. Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications. 
    more » « less
  4. 2-Iodosylbenzoic acid in the presence of trifluoromethanesulfonic anhydride is an efficient oxidant and electrophilic reagent useful for preparation of the corresponding alkenyl and aryliodonium salts. Compared to the previously reported methods of electrophilic activation of 2-iodosylbenzoic acid, this procedure is compatible with acid-sensitive functional groups, requires mild reaction conditions, and affords products in higher yields. 
    more » « less
  5. Hypervalent iodine heterocycles represent one of the important classes of hypervalent iodine reagents with many applications in organic synthesis. This paper reports a simple and convenient synthesis of benziodazolones by the reaction of readily available iodobenzamides with m-chloroperoxybenzoic acid in acetonitrile at room temperature. The structure of one of these new iodine heterocycles was confirmed by X-ray analysis. In combination with PPh3 and pyridine, these benziodazolones can smoothly react with alcohols or amines to produce the corresponding esters or amides of 3-chlorobenzoic acid, respectively. It was found that the novel benziodazolone reagent reacts more efficiently than the analogous benziodoxolone reagent in this esterification. 
    more » « less
  6. Abstract Hypervalent iodine compounds have found broad application in modern organic chemistry as reagents and catalysts. Cyclic hypervalent iodine reagents based on the benziodoxole heterocyclic system have higher stability compared to their acyclic analogues, which makes possible the preparation and safe handling of the reagents with special ligands such as azido, cyano, and trifluoromethyl groups. Numerous iodine‐substituted benziodoxole derivatives have been prepared and utilized as reagents for transfer of the substituent on hypervalent iodine to organic substrate. Reactions of these reagents with organic substrates can be performed under metal‐free conditions, in the presence of transition metal catalysts, or using photocatalysts under photoirradiation conditions. In this review, we focus on the most recent synthetic applications of cyclic hypervalent iodine(III) reagents with the following ligands: N3, NHR, CN, CF3, SCF3, OR, OAc, ONO2, and C(=N2)CO2R. The review covers literature published mainly in the last 5 years. 
    more » « less
  7. null (Ed.)
    Organohypervalent iodine reagents are widely used for the preparation of various oxazolines, oxazoles, isoxazolines, and isoxazoles. In the formation of these heterocyclic compounds, hypervalent iodine species can serve as the activating reagents for various substrates, as well as the heteroatom donor reagents. In recent research, both chemical and electrochemical approaches toward generation of hypervalent iodine species have been utilized. The in situ generated active species can react with appropriate substrates to give the corresponding heterocyclic products. In this short review, we summarize the hypervalent-iodine­-mediated preparation of oxazolines, oxazoles, isoxazolines, and isoxazoles starting from various substrates. 1 Introduction 2 Synthesis of Oxazolines 3 Synthesis of Oxazoles 4 Synthesis of Isoxazolines 5 Synthesis of Isoxazoles 6 Conclusion 
    more » « less
  8. This account describes the development of organosulfonyloxy-substituted iodine(III) and iodine(V) benziodoxole derived reagents, which are thermally stable compounds with useful reactivity patterns. Iodine(III) benziodoxoles and pseudobenziodoxoles are powerful electrophiles and mild oxidants toward various unsaturated compounds. In particular, pseudocyclic benziodoxole-derived triflate (IBA-OTf) is an efficient reagent for oxidative heteroannulation reactions. Aldoximes react with nitriles in the presence of IBA-OTf at room temperature to give 1,2,4-oxadiazoles in high yields. Moreover, IBA-triflate is used as a catalyst in oxidative heteroannulations with m-chloroperoxybenzoic acid as the terminal oxidant. The iodine(V) benziodoxole derived tosylates, DMP-tosylate and IBX-tosylate, are superior oxidants for the oxidation of structurally diverse, synthetically useful alcohols, utilized as key precursors in the total syntheses of polyketide antibiotics and terpenes. And finally, the most powerful hypervalent iodine(V) oxidant, 2-iodoxybenzoic acid ditriflate (IBX·2HOTf), is prepared by treatment of IBX with trifluoromethanesulfonic acid. According to the X-ray data, the I–OTf bonds in IBX-ditriflate have ionic character, leading to the high reactivity of this reagent in various oxidations. In particular, IBX-ditriflate can oxidize polyfluorinated primary alcohols, which are generally extremely resistant to oxidation. 1 Introduction 2 Iodine(III) Benziodoxole Based Organosulfonates 3 Pseudocyclic Iodine(III) Benziodoxole Triflate (IBA-triflate) 4 Pseudocyclic Iodine(III) Benziodoxole Tosylates 5 Iodine(V) Benziodoxole Derived Tosylates 6 Iodine(V) Benziodoxole Derived Triflate (IBX-ditriflate) 7 Conclusions 
    more » « less